Synthesis of Varied Heterocyclic and Substituted Aryl Alkyl Secondary Amines, Related Schiff Bases, and Anides

Gordon N. Walker and Mhram Ann Kiemp

Research Division, ('IBA Ihur'maceatical Company, Division of CIBA Corpocrtion, Summit, Voru Jersery

Following in investigation ${ }^{1}$ of basic α, β-diarylpropionitriles. (I) as potential steroid 11-hydroxylation inhibitors, it appeared advisable to extend the work in the direction of some similar benzanilide (II) and benzylaniline (III) analogs having structural similarity, with special reference to compounds in which Ar_{1} and An were aminophenyl and pyridyl groups.
$\mathrm{Ar}_{1} \mathrm{CH}_{2} \mathrm{ClI}(\mathrm{CN}$ lar:
$\mathrm{Ar}_{1} \mathrm{CH}_{2} \mathrm{NRAR}_{2}$
III

$$
\begin{aligned}
& \text { ABCONRAR } \\
& \text { II } \\
& \mathrm{Ar}, \mathrm{CHR}), \mathrm{NH}(\mathrm{CHB}) \text { a } \mathrm{Ar} \\
& \text { I }
\end{aligned}
$$

Accordingly, some basic amides (II) and their derivatives, listed in Table I, were first syuthesized by standard procedures, the p-aminophenyl compounds being prepared by hydrogenation of the corresponding p nitroamides. These substances were found to be devoid of interesting effects in endocrine and other pharmacological tests.
nitro group. 'lhis substaluee showed effects on dog adrenocortical steroid output similar to, although waker than, those exerted by compound deactibed carlier, 'and thus appeared to minic st moturally the amphenone and metapyrone-rehated basie nitule (1) reported previously. As in the hater aeries, the
 pyridyl amalog.

Anils and benzytanitines resemble in motecutar shape the mumerons azo eompounds, stillenes. ete.. hong known to have various chemotherapentic effeets. Sytems comprised of certain sehiff baser, notably those derived from pyridoxal and capable of triad prototropy, ${ }^{4}$ have been implicated in biological mechanimas of transamination and oxidation. With these thoughts in mind. one may imagine that a program, based on general serecning of a series of benzyl and benzylidene anilincs substituted with a broad aswortmont of group;. might turn up sone new directions in drug design. It least daring the time (19.751999) of our (effort. : And perhaps to a hage extent at present as well, there is little predicting ardurately what partionlar eomponnts, chosen at randon from a series not previously much anvestigated, will alter biological oxidation or on her reactions, nor on what cellular systems in who they will chance to exert a specifice effect. Encounaged by reportw implying chemotherapentic efficary of minaturated componnds incorporating the p-immonalieyle acid, niootinoyl and inonicotinoyl hyodrazides, and dialkylamino (X-mustard) moicties. we commenced to

Tablef 1
Amiden AnCONHAR:

At	(1)	$\mathrm{Mr}_{1},{ }^{\circ} \mathrm{C}$
3-P'yridyl	3-Pyridyl	188-19\%
3 -Pyridy	2-Pyridy	1:3i-139
3-Pyridy	3-Pyridy	240-244
3 -Pyridy ${ }^{\text {d }}$	o-Hydroxypheny	-24-296
p-Nitrophenyl	3-Pyridy	2.8-2:31
p-Nitropheryl	p-Hydroxypheny	263-265
p-Xitruphenyl	p-Nitruphenyl	26-5-267
p-Nitrophenyl	4 -Pyridy 1	$248-2.50$
p-Aminophenyl	3-Prridy	234-2:36
p-Aminophenyl	p-Hydroxyphenyl	25-2-254
p-Aminophenyl	p-Aminopheny!	205-207
p-Aminophenyl	4-Pyridy	$\bigcirc 66-268$

Reeryst
solvent"
C
C
A-1)
A-C
A
A
A
A
A
A
B
A
Furu"

 139° was also reported: Chem. Abst., 29, 2535 (1935); 36, 3512 (1942). The roresponding 4-aminopridineamide is :uks, known see Chem, Abstr., 32, 4285 (1938).

More interesting results were encountered in a series of amines (III; see Table II) which were prepared using the widely applicable method, sodium borohydride reduction of corresponding arylidenamines. ${ }^{2.3}$ One compound in particular, an amide (III, $\mathrm{Ar}_{1}=3$-pyridyl; $\mathrm{Ar}_{2}=p$-aminophenyl; $\mathrm{R}=\mathrm{COCH}_{3}$), was obtained by condensation of pyridine-3-aldehyde with p-nitroaniline followed by the sequence (1) sodium borohydride reduction, (2) acetylation of the resulting secondary amine, and (3) catalytic hydrogenation (Pd) of the

[^0]prepare a series of S chiff bases and comesponding amines derived from these and other similar groups.

[^1]Table II
Aromatic Secondary Amines

No.	Ar_{1}
1	3-Pyridyl
2	4-Pyridyl
3	o-Chloropheny!
4	2-Pyridyl
$\overline{5}$	3-Pyridyl
6	3-Pyridy
7	3-Pyridyl
8	p-1)imethylaminophenyl
9	2-Pyridyl
10	3-Pyridy
11	4-Pyridyl
12	3,4-Dimethoxyphenyl
13	3,4-Dimethoxyphenyl
14	p-Nitrophenyl
15	p-Hydroxyphenyl
16	p-Hydroxyphenyl
17	p-Dimethylaminophenyl
18	o-Hydroxyphenyl
19	o-Hydroxyphenyl
20	o-Hydroxyphenyl
21	3,4-Dimethoxyphenyl
22	o-Hydroxyphenyl
23	p-Hydroxyphenyl
24	o-Hydroxyphenyl
25	p-Chlorophenyl
26	o-Hydroxyphenyl
27	3-Indoly
28	p-Chlorophenyl
29	3,4-Dimethoxyphenyl
30	p-Chlorophenyl
31	o-Hydroxyphenyl
32	p-Chlorophenyl
33	o-Hydroxyphenyl
34	3,4-Dimethoxyphenyl
35	p-Hydroxyphenyl
36	p-Chlorophenyl
37	p-Chlorophenyl
38	p-Chlorophenyl
39	p-Chlorophenyl
40	o-Hydroxyphenyl
41	p-Chlorophenyl
42	p-Chlorophenyl
43	p-Dimethylaminophenyl
44	o-Hydroxyphenyl
45	o-Hydroxyphenyl
46	o-Hydroxyphenyl
47	2,4-Dichlorophenyl
48	p-Chlorophenyl
49	p-Chlorophenyl
50	3,4,5-Trimethoxyphenyl
51	3,4,5-Trimethoxyphenyl
52	3,4,5-Trimethoxyphenyl
53	3,4,5-Trimethoxyphenyl
54	3,4,5-Trimethoxyphenyl
55	p-Iimethylaminophenyl
56	p-Dimethylaminophenyl
57	p-Dimethylaminophenyl
58	p-Dimethylaminophenyl
59	p-Dimethylaminophenyl
60	3,4-Dimethoxyphenyl
61	3,4-Dimethoxyphenyl
62	3,4-Dimethoxyphenyl
63	3,4-Dimethoxyphenyl
64	3,4-Dimethoxyphenyl
65	3,4-1)imethoxyphenyl

Ar2	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$		led			nd	
		c	H	N	c	H	N
m-Nitrophenyl	114-115	62.87	4.84	18.33	63.04	4.91	18.00
o-Hydroxyphenyl	176-178	71.98	6.04	13.99	72.18	6.21	13.95
p-Dimethylaminopheny-1	45	69.08	6.57	10.75	69.02	6.62	11.02
p-Hydroxyphenyl	164-166	71.98	6.04	13.90	71.72	5.98	14.24
p-Hydroxypheny	145-146	71.98	6.04	13.99	71.93	5.99	13.17
o-Hydroxyphenyl	177-178	71.98	6.04	13.99	72.06	6.09	14.22
4-Carboxyphenyl	220-222	68.41	5.30	12.27	67.93	5.38	12.45
p-Hydroxyphenyl	130-132	74.35	7.49	11.56	74.47	7.49	11.66
4-Carboxyphenyl	207-209	68.41	5.30	12.27	68.38	5.42	12.51
3-Carboxyphenyl	190-192	68.41	5.30	12.27	68.24	5.21	12.37
4-Carboxyphenyl	$\begin{gathered} 244-24 \bar{i} \\ \text { dec } \end{gathered}$	68.41	5.30	12.27	68.27	5.40	12.31
3-Hydroxy-4-carboxyphenyl	170-171	63.36	5.65	4.62	63.04	5.66	4.58
p-Hydroxypheny!	164-166	69.48	6.61	5.40	69.25	6.29	5.65
3-Pyridy	92-94	62.87	4.84	18.33	62.60	5.06	18.34
3-Pyridyl	191-192	71.98	6.04	13.99	72.12	6.30	13.79
p-Aminophenyl	164	72.87	6.59	13.08	72.92	6.75	13.39
p-Aminophenyl	78	74.65	7.94	17.41	74.94	8.11	17.30
p-Hydroxyphenyl	123	72.54	6.09	6.51	72.05	6.05	6.50
p-Chlorophenyl	123	66.81	5.18	5.99	66.30	5.12	6.13
3-Pyridy ${ }^{-1}$	190	71.98	6.04	13.99	72.09	6.43	13.83
p-Aminophenyl	88	69.74	7.02	10.85	69.59	6.95	11.13
m-Chlorophenyl	111	66.81	5.18	5.99	66.40	5.18	6.17
p-Dimethylaminophenyl	105	74.35	7.49	11.56	74.80	7.48	11.8
p-Dimethylaminophenyl	101	74.35	7.49	11.56	74.40	7.59	11.33
p-Dimethylaminophenyl	89	69.08	6.57	10.75	68.78	6.61	11.05
3-Hydroxy-4-carboxyphenyl	147	64.86	5.05	5.40	64.74	5.17	5.42
p-Dimethylaminophenyl	127	76.94	7.22	15.84	77.02	7.43	15.80
p-Aminophenyl	140	67.09	5.63	12.04	66.61	5.70	11.69
p-Dimethylaminophenyl	123	71.30	7.74	9.78	71.33	7.73	10.64
o-Chlorophenyl	42	61.92	4.40	5.56	61.48	4.34	5.63
p-Nitrophenyl	138	63.92	4.95	11.47	64.23	5.02	11.75
p-Chlorophenyl	70	61.92	4.40	5.56	61.77	4.30	5.57
2,4-Dichlorophenyl	83	58.23	4.14	5.22	58.25	4.21	5.12
p-Chlorophenyl	123	64.86	5.81	5.04	65.06	5.99	5.14
m-Nitrophenyl	124	63.92	4.95	11.47	63.68	5.01	11.71
3-Pyridyl	106	65.90	5.07	12.81	66.21	5.34	13.09
3-Hydroxy-4-carboxyphenyl	169	60.54	4.36	5.04	60.43	4.41	5.20
4-Pyridyl	137	65.90	5.07	12.81	65.38	5.47	12.38
p-Iodophenyl	101	45.44	3.23	4.08	45.46	3.24	3.96
p-Iodophenyl	122	48.02	3.72	4.31	48.10	3.93	4.15
p-Hydroxyphenyl	101	66.81	5.18	5.99	66.45	5.14	5.71
m-Nitrophenyl	114	63.92	4.95	11.47	64.11	5.02	11.20
4-Carboxyphenyl	188 dec	71.09	6.71	10.36	70.74	6.80	10.44
4-Sulfamylphenyl	182	56.09	5.07	10.07	55.73	5.07	9.84
2,5-Dichlorophenyl	92	58.23	4.14	5.22	58.19	4.18	5.22
2-Thiazolyl	129	58.23	4.89	13.58	57.96	4.81	13.63
p-Chlorophenyl	74	54.48	3.52	4.89	53.87	3.57	4.51
o-Hydroxyphenyl	109	66.81	5.18	5.99	66.62	5.08	5.99
2-Thiazoly	131	53.45	4.04	12.47	53.71	4.14	12.68
1,2,3,4-Tetrahydro-5-naphthyl	112	73.36	7.70	4.28	73.04	7.45	4.16
1,2,3,4-Tetrahydro-6-r1aphthyl $(\cdot \mathrm{HCl})$	196	66.01	7.20	3.85	66.09	7.13	3.96
3,4-Dimethoxyphenyl ($\cdot \mathrm{HCl}$)	202	58.45	6.54	3.78	58.38	6.41	3.75
2-Thiazolyl ($\cdot \mathrm{HCl}$)	190	49.28	5.41	8.64	49.62	5.64	8.58
p-Dimethylaminophenyl	98	68.33	7.65	8.85	68.50	7.70	9.04
2-Thiazolyl	149	61.77	6.48	18.01	61.53	6.72	17.89
p-(2-Hydroxyethyl)phenyl	82	75.52	8.20	10.36	75.25	8.21	10.67
3,4-Dimethoxyphenethyl	74	71.30	7.74	9.78	71.70	7.87	10.03
p-Dimethylaminophenyl	99	75.79	8.61	15.60	75.65	8.23	16.11
p-Methoxyphenyl	98	74.96	7.86	10.93	75.22	7.83	10.81
p-Diethylaminophenyl	66	72.58	8.34	8.91	72.75	8.29	9.19
p-Carboethoxyphenyl	120	68.55	6.71	4.44	68.11	6.61	4.39
1-Naphthyl	136	77.79	6.53	4.77	78.00	6.30	4.81
1,2,3,4-Tetrahydro-6-naphthyl	98	76.73	7.80	4.71	76.99	7.72	4.69
p-(2-Hydroxyethyl)phenyl	94	71.05	7.37	4.87	71.21	7.16	5.11
2-Thiazolyl	126	57.59	5.64	11.20	57.8 .5	5.74	10.91

T．bble 1II
Ammines wo Secondry Ames

So．	$\mathrm{ra}{ }^{\prime}$
1	$3-\mathrm{Py}-\mathrm{ClI}=$
\because	$3-\mathrm{Py}$－CH：
3	$4-1{ }^{1} \mathrm{y}$－ CHI_{2}
4	$3-\mathrm{Py}-\mathrm{CH}_{2}$
－	$4-\mathrm{Pr}-\mathrm{CHI}=$
${ }^{6}$	4－Py－CII：
7	$4 \mathrm{Pr}^{1} \mathrm{y}-\mathrm{CH}$
S	3－P9－Cll
！	$2-1 \mathrm{y}-\mathrm{ClH}_{2}$
111	$3-\mathrm{P}$ ¢ y －CII：
11	$4-\mathrm{P} \mathrm{y}$－CfI，
12	4－Py－CHe
$1: 3$	3－Py－CH：
14	$2-\mathrm{P}$－ $\mathrm{ClH}^{\text {a }}$
15	4 －Py－ClIe
$1{ }^{\text {i }}$	：－PY－CII
17	3－1＇v－CHz
1 s	$2-\mathrm{Py}-\mathrm{ClH}_{4}$
$1!1$	$2-1)$－ CH_{2}
21	$3-\mathrm{P}$ y－CII
21	＋－Py－CH：
$\underline{2}$	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}=\mathrm{CHCH}_{2}$
23）	$2-\mathrm{Pr}$－ CH_{4}
24	$4-\mathrm{P}$－$-\mathrm{CH}_{2}$
2.	$4-\mathrm{P}-\mathrm{CHI}_{2}$
26	$4-\mathrm{P}^{2}-\mathrm{CHI}_{2}$
27	$3-\mathrm{Pr}$－CH：
28	$2-\mathrm{P}$ Y－CII：
29	；－Py－CH2
31	$2-\mathrm{Pr}$－CII，
31	$4-\mathrm{P} \mathrm{y}^{-\mathrm{CH}_{3}}$
： 2	：－P9－CHE
：${ }^{3}$	－－19－CH2
：34	4 －Pr－CII
（3）	$2-\mathrm{Pro-CII}$
36	$2-\mathrm{Qnin1}-\mathrm{CII}$
37	4－Quin－CHz
38	4－1＇y－CHz
3	$2-\mathrm{PY}-\mathrm{CHF}^{2}$
411	3－Py－CIIE
41	4－2nin－Clife
42	$2-1$ yr－CII：
43	－2－（1in－CIT：
44	$2-1$ yr－C11：
4.	2 －Pyp－CII
46	$2-\mathrm{PYr-CH}=$
47	$2-\mathrm{P} \mathrm{y}^{2} \mathrm{CH}=$
48	$2-\mathrm{Pry-ClH}$
411	4－（）uin－CH2
51	2－2uin－Clis
31	$2-\mathrm{P} \mathrm{yr}^{\mathrm{r}-\mathrm{CHI}}$
72	4－2uin－Clis
5	2－（Quin－CH：
54	2－1＇yr－Cll，
\therefore	－23r－CH1：
56	$2-\mathrm{Pr} \mathrm{r}-\mathrm{CH}$
．7	4－Quin－CHE
5s	
T！	2－1？－Clis
（6i）	$2-\mathrm{Prr-CHI} \mathrm{I}_{2}$
61	$2-\mathrm{Pr} \times \mathrm{ClH}$
（6）	t－Quin－CH\％
$6: 3$	$\because-\mathrm{Qrinin}-\mathrm{Cli}_{2}$
64	4－Qnin－CLI
65	4－Quin－CH：
（i6）	4－（2nill－ClI：

914，${ }^{\circ} \times$	${ }^{\prime}$	11	X	\bigcirc	11	N
115	711.201	（5．29	10 ！！	70.51	6.41	11.111
10.3	174．39	6．0）	8．4i）	54．28	6.06	－22
190	5s． 36	6.74	S．inl	58．3：	6．71）	（6．）
216	58.36	6.74	－ 51	－s． 6 \％	7.12	1
12	71， 29	6． 29	11） 113	70.25	6.107	11.11
161	54， 3	6.18	$\therefore .45$	－54．6s	6.38	84
$\underline{211}$		6.42	$\bigcirc 12$	5 5 .32	6.92	（1）
29	5．5．65	6.42	$\bigcirc \cdot 12$	－5．$\overline{\text { a }}$	6.64	11
1：17 dee	5x．$: 36$	6.74	$\times .31$	\％x．3）	6.8	8．4is
$21: 3$ dec	61） 211	（6．3）	01.36	5 5．n）		41
1918 der	－x．	6.36	1．$\times 2$	－1．26	（6． 681	（1）！1
16.	－5． 48	585	¢． 16	5－5 96	（f） 10	4！
23		5．	－． 16	万5， 33	$5.8!$	－ 14
210	5．） 111	6.21	－． 63	53． 14	6.16	$\bigcirc-6$
15%	¢，	15．73	7． SO_{0}	66． 41	7．in	7 7
212	56	6.38	7．su）	56．75	6.7	7 －
205	$5 \times$	13.36	（）心．	－9） 12	6.41	0.96
1711	5x．93	6.36	（1）${ }^{1}$	59.16	6.35	111.117
224	58.45	6.36	（1） O	5s．xil	6.4	41.61
1919	か） 15	1.336	（1）※2	58．42	6.57	1，\％
23	－3	6.36	（1）	$5 \times$	6 6．3	（a）
116－11N	su， 37	－ 56	5． 3.3	80．50）	7.67	［． $4 \times$
is	6：1．it	7.112	10．sis	（69）+7	－1．3	111.3
201	56．3t	6.46	$\bigcirc .76$	56.40	（6．s）	：
231 dec	515	（i）． 41	8.54	56.72	6.32	$x .61$
$\underline{-1010 ~ d e e ~}$	54.41	6．45	7.4	73．（1）	6.51	7.4
19\％	3\％．15	6 6：1	9．s．s	56．11；	（3．45	（1）121
115	85． 1.5	（6） $3: 1$	9．xn	56．5	6．54	8.8 .0
2es dee	万－15	6． 397	$\times \mathrm{sm}$	50.85	6.42	$\times .71$
20：3	611.211	6.73	9．36	（01，50）	6．$\times 2$	4．34
29	5－15	6．33）	s．sin	57.15	6.37	4－4
29	81.5	6.36	Stios	．7．41	6.26	－，
$\underline{214}$	万5．15	$6.3!1$	s．ss	87.111	（6．31	－ 31
18.5	600 21	6．73）	11：36	1014	6．s． 1	9.011
148	－7．	6.7		57．66	（1） 1 ！	
10.4			111.14			110.14
191	is． 41	5．ss	（i）． S_{1}	5x． 111	$6.11+$	6． 512
129	53： 311	6．2．	6． 2.8	54.10	6． 66	13． 16
2103	53．111	6.14	7.76	23．13：	6.31	－in
145	51.90	6．2：3	7.8	51，	6． 46	7．${ }^{\text {2 }}$
1119	5.3111	6.14	7.76	53， 3.3	6．24	7%
16 si der	511．35	（i．36	7.31	59.05	（6．5）	72
$1+1$	73．111	7．88	I2． 17	－2，－2	－ 116	11．8！
217	62． 47	6.01	76	62．31	6.21	7． i_{2}
16.5	（1：3． $11: 3$	7．18	10．51	62.60	7．24	111.50
160	5314	6.75	¢1， 11	51.66	706	111．0：；
1，5			12.27			12.11
164	（6）	6.611	11.47	（65．5\％	6.14	11.66
167	61．32	6．52	！ 5.5	（80．74	（1，5）	1.44
2015	6：3．66	5．sx	7.4 \％	（33． 46	6.17	$7 \times$
191	601．	6．15	7.11	61.27	in it	711
$14!1$	6it． 16	－i．${ }^{\text {a }}$	（1，14	64.41	－7	111.114
211 der	（3） $3: 2$	6.38	73	$62 \times$	6.61	714
190 dec	61．sı）	6．45	7．23	61．52	15.7	7.27
158	615． 11.	7．64	11.17	$67.1!1$	－ 1 a；	11.12
14	（6）． 71	7．18	（9） 44	60． 33	7 32	（1） 1^{-}
8	73．111	7 Co	12.17	72.33	7，（1）	122：
14＊	51.5	6.18	6．13）	59.6	6．51	13． 211
1×7	（21． 16	6.11	7.118	60.58	0．33：	7.11
214	－3． 66	（6．42	8． 11	55． $6: 3$	（0．45	8.30
161	61．74	6.78	11.101	61.17	（6． $\mathrm{S} \times 1$	$111.5!1$
1.7	2，sis	6.51	13.45	72.91	6．s\％	1；3．111
14．8	50	5．x	7.35	59， 74	6．10	7.111
15x	5！	5 ${ }^{2}$	73	60.00	6．35	7.111
151	（ii）：3 ${ }^{\text {a }}$	6．35	8.42	64.111	（i） B ；	7.14
2101 der	$5!15$	6． $\mathrm{K}^{\text {c }}$	7.31	59.89	6.911	－\％
$1: 1$	5）－	5.96	7.58	55.64	（3．46	． 41

Table III (Continued)

No.	$\mathrm{Rt}^{\text {a }}$	R_{2}	$\mathrm{Mp}{ }^{\circ} \mathrm{C}$		aled,		-Found. \%---		
				c	H	N	c	H	N
67	2-Quin- CH_{2}	$4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CHOHCH}_{2}{ }^{2}$	174 dec	62.47	6.07	7.67	62.41	6.08	7.95
68	$4-\mathrm{Py}-\mathrm{CH}=$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOHCH}{ }^{\text {a }}$	110	74.31	6.24		74.76	6.02	
69	4-Quin- CH_{2}	$4-\mathrm{MeC}_{4} \mathrm{H}_{4} \mathrm{CHOHCH}_{2}{ }^{\text {b,h }}$	149	60.96	6.19	7.66	61.21	6.42	7. 0
70	2-Quin- CH_{2}	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOHCH}{ }_{2}{ }^{\text {b }}$	174	61.54	5.74	7.98	61.41	5.87	8.00
71	$2-$ Quin- CH_{2}	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOHCH}\left(\mathrm{CH}_{3}\right)^{6}$	210	62.47	6.07	7.67	62.62	6.18	7.52
72	2-Py-CH2	$4-\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)^{\text {b }}$	221	57.15	6.40	8.89	57.07	6.54	8.54
73	$2-\mathrm{Quin}-\mathrm{CH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)^{\text {b }}$	193	65.33	6.35	8.02	65.72	6.43	7.93
74	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOHCH}\left(\mathrm{CH}_{3}\right)$	96-99	80.86	7.92	5.24	80.60	8.00	5.32
75	$2-\mathrm{Py}-\mathrm{CH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOHCH}{ }_{2}{ }^{\text {b }}$	166	55.82	6.02	9.30	55.88	6.12	9.54
76	$3-\mathrm{Py}-\mathrm{CH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOHCH}{ }_{2}{ }^{\text {b }}$	179	$5 \overline{5} .82$	6.02	9.30	56.12	6.21	9.61
77	4 -Py-CH2	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOHCH}{ }_{2}{ }^{\text {b }}$	143	55.82	6.02	9.30	55.84	6.17	9.14
78	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCH}_{2}$	$4-\mathrm{NeOC}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)^{e}$	217-220	71.80	7.61	4.40	72.08	7.66	4.56
79	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$	$4-\mathrm{MeOC} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)^{e}$	233	71.34	8.19	4.37	71.20	8.18	4.38
80	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOHCH}\left(\mathrm{CH}_{3}\right)$	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CHOHCH}_{2}{ }^{\text {e }}$	185	64.10	7.16	4.15	64.13	7.28	4.29
81	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CHOHC}\left(\mathrm{CH}_{3}\right)=$	$4-\mathrm{MeOC} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CHOHCH}_{2}$	119	72.21	7.07	4.68	72.26	6.75	4. 8
82	$\mathrm{C}_{1} \mathrm{H}_{5} \mathrm{CHOHCH}\left(\mathrm{CH}_{3}\right)$	$4-\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{8}\right)^{e}$	227	67.17	7.52	4.35	67.13	7.70	4.45
83	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$	$3,4-\left(\mathrm{CH}_{2} \mathrm{O}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)^{e}$	167	67.59	6.93	4.38	67.68	7.13	4.12
84	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$	$3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{2}\right)_{2}{ }^{\text {e }}$	150	67.94	7.80	4.17	68.25	7.96	4.31
85	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOHCH}\left(\mathrm{CH}_{3}\right)$	$3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{2}\right)_{2}$	$85-86{ }^{\text {f }}$	72.35	7.99	4.44	72.15	7.92	4.37
			$176{ }^{e}$	64.85	7.44	3.98	64.39	7.48	4.05
86	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOHCH}\left(\mathrm{CH}_{3}\right)$	$3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2}{ }^{\text {e }}$	183	62.03	7.13	3.81	61.86	7.22	3.90
87	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOHCH}\left(\mathrm{CH}_{3}\right)$	$3,4-\left(\mathrm{CH}_{2} \mathrm{O}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)^{e}$	237	65.23	6.92	4.00	65.18	7.00	4.03
88	$3,4$-(NeO$)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}$	$4-\mathrm{MeOC} 6_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2}$	111	68.12	7.31	4.41	67.86	7.27	4.38
89	$3,4,5-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CH}_{2}$	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)^{e}$	152	62.90	7.39	3.66	62.70	7.39	3.71
90	$3,4,5-(\mathrm{MeO})_{3} \mathrm{C}_{\mathrm{e}} \mathrm{H}_{2} \mathrm{CH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{5}\right)^{e}$	164	64.0	7.16	4.14	63.42	7.06	4.40
91	$3,4,5-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CH}_{2}$	3,4-(NeO$)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{2}\right)_{2}{ }^{\text {e }}$	157	60.37	7.09	3.52	60.19	7.18	3.41
92	$3,4,5-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{2}{ }^{\text {e,k }}$	166		7.16	4.14		7.16	4.39
93	$3,4,5-(\mathrm{NeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)^{e}$	166	64.88	7.45	3.98	64.80	7.52	4.12
94	$3,4,5-(\mathrm{MeO})_{3} \mathrm{C}_{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOHCH}{ }_{2}{ }^{e}$	201	61.09	6.84	3.95	60.99	6.89	4.03
95	$3,4,5-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHOHCH}\left(\mathrm{CH}_{3}\right)^{e}$	218	62.03	7.13	3.81	62.07	7.28	3.93
96	$3,4,5-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CH}_{2}$	$4-\mathrm{MeOC} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CHOHCH}_{2}{ }^{\text {e }}$, h	204	58.00	6.85	3.56	58.13	6.92	3.55
97	$3,4,5-(\mathrm{TeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CH}_{2}$	$3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CHOHCH}{ }_{2}{ }^{e}$	185	58.03	6.82	3.38	58.07	6.94	3.09
98	$3,4,5-(\mathrm{TeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CH}_{2}$	Cyclohexy ${ }^{\text {e }}$	147	60.84	8.29	4.43	60.87	8.21	4.58
99	$3,4,5-(\mathrm{TeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CH}_{2}$	$\mathrm{Et}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}{ }^{\text {b.c. }}$	179	52.03	8.2	7.6	52.15	8.23	7.86
100	$3,4,5-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CH}_{2}$	$\mathrm{Me} \mathrm{e}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3}{ }^{\text {b,c }}$	207	50.7	7.95	7.9	50.67	7.89	7.84
101	$3,4,5-(\mathrm{NeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CH}_{2}$	$\mathrm{Et}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)^{3}{ }^{\text {, }}$ i	192	50.87	8.53	6.98	50.62	8.19	6.91
102	$3,4$-(MeO$)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}$	Cyclohexyl ${ }^{\text {e }}$	201	63.1	8.47	4.9	63.01	8.64	4.93
103	$3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}$	$\mathrm{Me}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{8}{ }^{6, i}$	203	51.69	8.06	8.61	51.46	8.06	8.14
104	$3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	187	65.46	6.85	4.77	65.79	6.98	4.75
105	$4-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	Cyclohexyl ${ }^{1 . c}$	208 dec	59.01	8.58	9.17	58.81	8.40	9.43
106	$4-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}{ }^{\text {b, }}$, ${ }^{\text {c }}$	194	61.34	7.08	8.94	61.14	7.09	9.11
107	$4-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right)^{b}$	184	62.38	7.4	8.57	62.17	7.40	8.71

${ }^{a}$ Py $=$ pyridyl, Pyr = pyrryl, Quin $=$ quinolyl. ${ }^{b}$ Dihydrochloride. ${ }^{c}$ Hygroscopic. ${ }^{d} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$. ${ }^{e}$ Monohydrochloride. ${ }^{f}$ Crystalline base. ${ }^{\circ}$ Dihydrate. ${ }^{h}$ Hemihydrate. ${ }^{i}$ Monohydrate. ${ }^{i}$ Infrared: $\lambda_{\max } 6.0 \overline{7}-6.08 \mu .{ }^{k}$ Anal. Caled: Cl, $10.49 . ~ F o n n d:$ $\mathrm{Cl}, 10.68$.

Inspection of Table II will indicate that hydride reduction of anils has such versatility with respect to functional group variation as is seldom encountered in other synthetic procedures, since there are very few rings or groups of possible prosthetic interest that will not survive treatment with methanolic borohydride. Contrary to certain recorded statements, ${ }^{1}$ we encountered no great difficulty in isolating borohydride reduction products of arylaldimines bearing aromatic carboxylic acid, hydroxyl, or sulfonamide groups, provided that aqueous solutions were appropriately neutralized or acidified after the reactions, if necessary, and provided that sufficiently vigorous conditions and excess reagent were employed. This work incidentally gave a variety of new arylbenzylamines potentially useful in further synthetic work toward other pharmacologically interesting classes of compounds. Moreover some presently rather inexplicable biological effects were found in testing several of the compounds of Table II, as mentioned below.

Knowing that attachment of substituted or heterocyclic arylidene or arylmethyl groups to the nitrogen of an amine can change its biological properties, one is led to predict some profitable outcome in modifying along similar lines the catecholamines and phenethylanines. ${ }^{6-8}$ Not only do β-pyridylethylamines ${ }^{9}$ and selected arylethylamines, ${ }^{10}$ particularly $1-(p$-methoxy-phenyl)- and 1-(3,4-methylenedioxyphenyl)-2-propylamines, show analgetic effects, but other modified arylethylamines ${ }^{11}$ (aside from amphetamine) have been re-

[^2]ported as having central or selective adrenergic blocking actions. Moreover, several relevant, reports, appearing during the course of our own work, indicated that aylethylamines with appended heterocyclic groups such as pyridyl${ }^{12}$ and pyridylethyl ${ }^{13}$ had, respectively. enhanced analgetic or central depressuntactivities, and aho concurrently a number of new relatives of mess:aline with altered pharmacology were reportel. ${ }^{14}$ Study of certain other phenolic $\Lambda^{-}-\gamma$-phenylpropyl-substituted phenethylamines earlier had revealed vasodilatory properties, ${ }^{15}$ and substituted N -benzylephedrines ${ }^{19}$ were known as useful bronchodilators. More recently N- $૩-$ phenoxyethyl derivatives of phenethylamines were reported as coronary dilators, ${ }^{12}$ and interesting coronary effects have been described as woll with $\bar{X}-(\gamma, \gamma-d i-$ phenylpropyl)phenethylamines. ${ }^{18}$

In the synthesis of the secondary amines (IV) listed in Table III, it was possible, at mentioned carlice, ${ }^{31}$ to obtain some products by borohydride reduction of two different Schiff bases, for example, see Scheme I.

Sohexit 1

B

However: at least with pyridyl compounds, aldimines of type A were found to be more stable, obtainable in greater variety, and reduced in better yields than those of type B. Thus, nearly all of the heterocyclic--substituted secondary amines were prepared wia A-type intermediate imines; of the latter, those which were obtained in crystalline form and purified during the course of the work are also listed in Table III. The yichls of the borohydride reduction products ranged from $60-90 \%$. The borohydride method has the advantage over alternative reductive alkylation ${ }^{19}$ of amines. in avoiding arymethylamine hydrogenolysis as well as concurrent reduction of pyridyl :and other heterocychic moietics, both of which are likely to occur with platimum and other catalysts.

Schiff bases such as B and related ones from $1-$ hydroxy-1-phenyl-2- propanone and the aminomethylpyridines perhaps owe their lack of stability to a rela-

[^3]tively great tendency for triad prototropis shift of the double bond under basic conditions. ${ }^{20}$ No, such difficulty was encountered with the more stable (X compounds prepared from 2 -phenylpropanone, 1 -hydroxy-1-phenyl-2-propanone or phenylpropanchone and the 及-arylethylames, reduction of wheh cuabled preparation of compounds such ats 79,80 , and 8287 (Table III) in high yield.

Pharmacology.-Compounds were sereened by proredures deseribed or refered to in previous particles., "1 for adrenal, anagetic: Ca^{-8}, and cardiovasoular offerts. Barly in the work, interest rentered on curtocrine phenomena, and through use of a chromatographic technique ${ }^{22}$ compounds $\mathbf{8}$ and $\mathbf{1 7}$ of Table II were found to increase somewhat the output of all the adrenocortical steroids being traced in dog experments. This was attributed tenatively to incrased ACTH production. Other methoxy, p-hydroxy, and p-amino rompounds of the same type, however, did not seen to have measumble effects of this kind, but rather wore found to are :ts motor stimulants in mine and dogs. The most active atimulant of Table II appeared to be compound 29, which provoked marked and protonged excitement and increase in aggressive behavior in dogat $5-10 \mathrm{mg} / \mathrm{kg}$ but was also convulsive at the higher dowe. Weaker effects of the sume type were observer with several other related compounds, notably 16, 21. 23, and 60. The onset of toxic (ffects was sow (20 hr) and it would appear that the ate tion of these compountis not entirely a direct one on the central nervons sytem but may involve rather complex effects on the coldocrine batume between the adrenal and pituitary glands. liuther inverigation of this powibility, : 1 lthough at present not waranted from a practical point of view. might be interesting.

At dowes of ca. 3 3 10 mg kg. compounds 8, 24, 25, and 27 (Table II) evoked transient hypotensive offects in dogs, and at higher dowes (25-100 $\mathrm{mg} / \mathrm{kg}$) they acted as stimulatsts in mice. Similar effects were observod with two compounds reported carlier, 3 - (p-dimethylaminobenzylamino)pyrdince ${ }^{\text {at }}$ and 3 -(p-dimethylaminomethylamino indole. ${ }^{\text {.a }}$ However, the compomurd of Table If hatving pyridyl, 1 rimethoxyphenyl, and other substituent groups were practically devoid of interesting phamarological efferts. and halogen-conttaming molerulos, while sonewhat antifungal and antiparasitic (al a namber of instances, were usually guite sensitizing as well.

Considering the numerous precedents involved ${ }^{6 \cdots}$ in and the munber of substancer examined results with compounds in Table III were statistically rather disappointing. While many of the N-pyridylidenc- and λ-pyridylmethylamphetamines and phenethanolamines showed analgetic and or central stimalant effects in preliminity sweening, the percentage of conpounds which on repeated texting had noteworthy atiovity was rather small. Reproducible analgetic" (tail flick tevi) responses at doses ranging up to $100 \mathrm{mg} / \mathrm{kg}$ (subcutaneous) wre obtained with compounds 31, 48. and 68, and with Schiff bases corresponding to compounds $28, \mathbf{5 6}$, and 75 . The best of these appeared to

[^4]
be $\mathbf{4 8}$, detectably active at ca. 20% of the toxic (70 mg / kg) dose, not antagonized, but rather apparently enhanced in its effect, by N-allylnormorphine, and not effective orally.
It is interesting that, whereas Schiff bases, notably those corresponding to compounds $\mathbf{1 0}, \mathbf{3 0}, \mathbf{3 4}, 42,48-$ $52,54,64$, and 73 , as well as earlier reported N -(3indolyl)methyleneamphetamines, ${ }^{3 a}$ tended to evoke central stimulation bordering on convulsive effects in mice at $2.5-10 \mathrm{mg} / \mathrm{kg}$ (subcutaneously), the secondary amines with heterocyclic groups more often affected blood pressure or produced mild analgetic or sedative effects. Marked to moderate, but transient, hypotensive action was exerted by 11, 43, and 58 at (intravenous) doses of about $10 \mathrm{mg} / \mathrm{kg}$. As might be expected, ${ }^{15.23}$ lowering of blood pressure in dogs also resulted with several of the di(β-arylalkyl)amines, especially compounds 80 and $85-87$. The most interesting of these, lower melting diastereoisomeric 85 , was strongly hypotensive in dogs and lacked sedative properties, although in mice the same compound behaved as a central depressant. The higher melting diastereoisomer of 85 (see Experimental Section), on the other hand, in dogs produced a sedative response and did not lower blood pressure. The trimethoxyphenyl compounds of Table III did not prove to be of interest, nor did the remaining (102-107) amines have any useful effects.
Broadly speaking, results of testing this array of amines tended to point up the well-known close (and sometimes inseparable) connection between central, cardiovascular, and analgetic pharmacological actions of the phenethylamines, and it cannot be claimed that any improvement was found over the efforts of others to deal with this intriguing but complex problem.

Experimental Section ${ }^{24}$

\mathbf{N} - $(p$-Nitrophenyl $)$ nicotinamide.-Preparation of nicotinamides listed in Table I is exemplified by synthesis of this compound.

[^5]A mixture of 33.4 g of nicotinic acid and 52 ml of SOCl_{2} was heated on a steam cone for 15 min allowing excess reagent to boil away, and finally the solid residue was warmed very briefly in vacuo. The residual solid, crude nicotinoyl chloride hydrochloride (58 g), was combined with 37.5 g of p-nitroaniline in 500 ml of toluene, and the suspension refluxed 3 hr . Evolution of HCl was complete after ca. 1.5 hr . The yellow, insoluble crystals were collected and treated with 450 ml of wet methanol, and the suspension boiled 15 min . The crude product was then collected, washed with methanol, and air dried; yield $40 \mathrm{~g}(56 \%)$ of solvated amide, mp $253-255^{\circ}$ dec; purified further for analysis by recrystallization from methanol, it consisted of pale yellow needles of the hydrate, melting point as recorded in Table I.

Other amides were prepared by standard procedure in the presence of pyridine.

3-(p-Aminobenzoylamino)pyridine. A.-Reaction of p-nitrobenzoyl chloride with 10.9 g of 3 -aminopyridine in 500 ml of ethyl acetate for 0.5 hr afforded (rude $\mathbf{3 -}$ (p-nitrobenzoylamino) pyridine, $\operatorname{mip} c a .200^{\circ}$, in 84% yield.
B. Reduction of this nitroamide typifies the procedure used in preparing the anminoamides of Table I. A suspension of 9.7 g of product from A in 200 ml of ethyl acetate and 150 ml of ethanol was shaken on the standard Parr apparatus in the presence of 2.5 g of $10 \% \mathrm{Pd}-\mathrm{C}$ under $3.1 \mathrm{~kg} / \mathrm{cm}^{2}$ of hydrogen at 65° for 3 hr ; a pressure drop of $0.632 \mathrm{~kg} / \mathrm{cm}^{2}$ (in a $4-\mathrm{l}$. system) took place during the first hour, after which there was no further uptake. After filtration, the gray, solid mixture of catalyst and product was boiled with several portions (300 ml) of methanol to dissolve the product. Evaporation of the filtered methanol solutions gave $4.5 \mathrm{~g}(55 \%)$ of solvated product as pale yellow needles, mp $233-235^{\circ}$ dec (sintering 220°).

Other aninoamides (Table I) obtained in comparable yields, similarly, were quite sparingly soluble in alcohols and other organic solvents, and several consisted of very tenacious hydrates for which exact analytical figures were very difficult to obtain. Corresponding hydrochlorides, examined with a few examples, were even less tractable.

Anils and Schiff Bases.-The rompounds listed in Table IV and other secondary amine precursors were prepared by heating together equimolar amounts of requisite aldehyde and amine in an appropriate solvent, chosen in accordance with the solubility characteristics of the amine. Benzene or toluene was preferred so that customary azeotropic removal of water could be carried out through reflux for $1-3 \mathrm{hr}$ under a water separator. With some of the less soluble nitroanilines, nitrophenols, and isatin, ethyl acetate gave better results, and for highly polar (sulfonamido and carboxy) conıpounds ethanol or ethyl acetate was occasionally used to advantage. Within the linits of experi-
(24) Melting points were ohtained using a coil-heated stirred, silicone oil bath with a cacibrated 360° thermometer.
mental error and varying purity of commercial samples of the amines and aldehydes used, the yields of aldimines were nearly quantitative. Those which crystallized, were sufficiently stable. and could be purified successfully by recrystallization from ethyl acetate, benzene, or cyclohexane are listed in Tabler III and IV.

Secondary Amines.-Reduction of aldimines was invariably carried ont by treatment of a methanol sohntion or sumpension of the compound in an open vessel with exces (nsmally 2 --5 parns by weight or more if the reaction were relatively shiggish) solirl NaBH_{4}, added in portions as dencribed earlier. ${ }^{3}$ After als additionsl period of heating ($1-2$ lar), concentration 10 a smaller volnme, and treament with water, the prodncts wore inolated an described earlier ${ }^{3:}$ and either recrystallized from an appropminte solvent (ethanol, ethyl acetate, or andeons alcohols) on converted as usmal to hydrochlorides, which were then recrystallized from othanol, methanol, or ethanol-ether.

N-(3-Pyridylmethyl)-p-aminoacetanilide. A.--After the nisinl $\mathrm{Na}_{\mathrm{a}} \mathrm{BH}_{4}$ reduction of the anil propared from 3 -pyridinealdehyde and p-nitroaniline, the amine ($17.7 \mathrm{~g}, \mathrm{mp} 177-179^{\circ}$) was refluxed 0.5 hr with 250 me of acetic anhydride. Evaporation of exces reagent and collection of the prodint with the aid of othylacelate g:ve 10.4 g of the p-minomatamide, mp $90-42^{\circ}$.
B. Hydrogenation of 7.7 g of the nitroaretanilide in the preseuce of 3 g of $10 \mathrm{C}_{\mathrm{C}} \mathrm{Pl}-\mathrm{C}$ in ethylatate (350 ml) at 3 atm for 1 hr, filtration, and evaporation of the solvent gave crude, oily amine, from which there was obtaned 5.6 g of curresponding dihydrochloride, mp $177-150^{\circ}$ der: it crystallized from ethanol as the monohydrate, slightly unstable, pink crystals.

N-(3-Pyridylmethylene)-1-phenyl-2-propylamine, prepared by reaction of pyridine-3-aldehyde and amphetamine in benzene,
 with inflection $278 \mathrm{~m} \mu$ ($є 2630$).
\mathbf{N}-(1-Phenyl-2-propylidene)-4-pyridylmethylamine, similaty prepared by reaction of 2 -phenylpropanone and 4 -aminomethyl-
 ($\epsilon 3310$), with inflections 258 :and $262 \operatorname{mon}(\epsilon 3190$ and 2660), respectively).

Reduction of the foregoing two rompounds with NaBH_{4} in met hanol, as usual, gave identical smomples of $\mathbf{1 0}$ (Table III) as the dihydrochloride in each case: $\lambda_{\text {mox }}^{\text {E.OHI }} 25 \mathrm{~s} \operatorname{m} \mu(\epsilon 2650$).

Oher X-pyridylidene, X-pyrrylidene, and X-quinolylident: derivatives of anines, prepared nsing the appropriate heterocrelic aldehydes, showed infrared absurption at $6.0 \mathrm{~A} \mu$.
\mathbf{N}-Homoveratrylnorephedrine (Table III; isomers of 85). T\% a solntion of 40.6 g of honoveratrymane in 5 the nal of benzene was added a sohtion of 34 g 1-phenyl-1, 2 -propanedionc in +1111 mul of hemzene. After exothermic reaction was complete, the dondy

 the exothermide and effervescent leaction was finished, ble solntion was heated 1 hr on at stemn cone matil the exeres redneing
 Treatment of the cooled shapemsion with water and extracion of the cmule prodnct with ether, followed by drying ($\mathrm{K}_{2} \mathrm{CO}_{3}$) :und evaporation to at sualler volume, gave the higher melting diat-
 21.6 g with the aid of ether. A pure sample was prepared by
 119.5 1240.

 ing and funther 1 bituration with ether, 2.9 g of the lower melting
 (rystallization from ether and also characterized as the eorreeponding hydrochloride, :ss noted in T'able III

Componits $80,82,86$, and 87 were obtamed by redncion of corresponding inines prepared from 1-hydroxy-l-phenyl-2propanoule and ench wan isolated in the formof a single diasioneri$i^{\text {conter }}$

Acknowledgments.-- Assistance was rendered by Miss Badbara \therefore. Wearer and Mis. Patricia Surchan. Microanalytical data were provided by the Analytical Serveces Laboratory under the direction of Mr. Louis Dorfman. It is a pleasure to thank Dra. R. (iamut, A. I. Plummer. W. Barrett, J. J. Chart, H. Shepparl. A. Renzi, IL. Maxwell, L. B. Within, A. Earl, F: Coble. E. Konopka, and other menbers of the biological groups for phamacological and microbiological data.

[^0]: (1) G. N. Walker, J. Merl. Chem., 8, 58:3 (1065).
 (2) I. H. Billman and A. C. Diesing, J. Org. Chem., 22, 1068 (1115त̄).
 (3) (a) (. N. Walker amd M. A. Moore. ibio., 26, 432 (1061); (1i) G. N.

[^1]: (4) C. H. Stammer ami 1. D). McK゙inney, ihid., 30, 34:36 (196:5, hinve roriewed this subject. See alsu L. F. Fieser and M. Fjeser, "Topics in Orgavid Chemistry," Reinbod Eullishing Corp., New York, N. Y., 1963, w1, 285-286. For reduetion of pyridoxal Sel,iff Gases, see D. Hey(, E. Lno, … A. 11arris, and K. Folkers, J. Am. Chem. Soc., 70. 1670, 3669 (1948).
 (5) See. inter aliu, H. H. Fox, Srience, 118, 497 (1953]; C. T' Malmur, J. Org. Chem., 22, 1109,1110 (19571; F. D). Popp. ibith, 26, 1566 (10611: H. Priewe, German Patent 850.154 (19521; Chem. Abstr., 52, 11906 (1058). The idea of chemot gerabentic eompounds incorporating semidab; $-\mathrm{N}=\mathrm{N}-$.
 appropriate site, may release an active aldebyde or amine, is at (east as ond as 4-sulfamyl-2,4-diaminoazol, enzene bydrocbloride (Prontosil' $)$: sec. fow

 © $14633:$

[^2]: (6) G. L. Jenkins and W. H. Hartung. "Chemistry of Organic Medicinal Products." 3rd ed. John Whey and Sons. Inc., New York, N. Y'. 1953. pp 263-374.
 (7) W. H. Hartung, Chem. Rev., 9, 389 (1931).
 (8) R. B. Barlow, "Introduction to Chemical Pharmacology," 2nd ed. Methien and Co., Ltd., London, 1964, pp 282-343.
 (9) A. Burger lind G. E. UUyot, J. Org. Chem., 12, 342 (1947): A. Burger and C. R. Walter, J. Am. Chem. Soc., 72، 1988 (1950).
 (10) E. J. Fellows and G. E. Ullyot in "Medicinal Chemistry.' Vol. 1, C. M. Suter, Ed., John Wiley and Sons, Inc., New York, N. Y.. 1951, p 390. (11) (a) A. L. Allewelt and A. R. Day. J. Org. Chem., 6, 384 (1941): (b) H. Corrodi, H. Persson, A. Carlsson, and J. Roberts, J. Med. Chem.. 6, 751 (1963).

[^3]: (12) D. l'. (iras and D), W. Heimeyer, J. A m. (he n. Sor. 81, 4347 (1054); 1. P. Gray, 1). E. Heitmuyer and L. F. spinnel, ifed. 81, 4351 (1959).
 (1;) i. L. Shapino l. M. Rose, l. (. Testa, and L. Freedinan, J. Orf. Chem., 26, 1:323 (10011.
 (11.55): 22, 332 (1957): 23, 1479. 2034 (10581: 25, 2066 (1960),
 (15) F. Külz and C. Schöpf. U. A. Patent 2.661.373 (1953) : Chem. Abstr., 49, 1793 (1955]. See also K. Wiemers, Arch. Exptl. I'athol. Phormakol., 213. 283 (1951): Chem. Abstr.. 45, 1252 (1951).
 (16) M. Bockmüb(, G. Ehrhart, L. Stein, and i. Hallenslelem, L. ․ L'atent 2.088.041 (1937); Germax Patent 644.000 (1087); Chem. Adstr., 31, 682:3, 6415 (193- 4 , respectiveiy.
 (17) 11. W. Mued and . Van Dijk, Ifer. Trw Chime. 75, 12lj (195(0).
 (18) (;. Whrlarl, Arzneimittel Forsh/., 295, 100 (1960): K. Hursatuy, 1).

[^4]: (20) B. W. Laser, Chem, Rew. 63. 489 (19033.
 (1065).
 71. 1-: (162)

[^5]: (23) See J. S. Buck, J. Am. Chem. Soc., 53, 2192 (1931), and references therein.

